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ABSTRACT
Estimation of pathloss (PL) is important. The first indoor pathloss
radio map prediction challenge introduced an indoor PL estimation
problem. The indoor PL estimation is different from the outdoor one.
For outdoor PL estimation, semantic segmentation is crucial because
it can ignore PL in building areas, but indoor PL estimation, PL in
all regions must be estimated and given inputs such as reflectance
and transmittance are correlated. We applied MST++ to the estima-
tion of the PL map for dealing with correlated input data. After the
estimation of direct PL estimation, we used MST++ to estimate the
PL map from the input of four channels. The experiments show the
effectiveness of our approach.
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1. INTRODUCTION

Pathloss (PL) estimation is important for estimating PL map from
transmitted antenna (Tx). The first indoor pathloss radio map pre-
diction challenge [1] is an ICASSP 2025 signal processing grand
challenge, which introduced the indoor PL estimation problem. For
the outdoor PL estimation, the NN tailored for Pathloss Map Pre-
diction (PMNet) [2] achieves the SOTA. However, the indoor PL
estimation is different from the outdoor one. For the estimation of
outdoor PL, semantic segmentation is crucial because it can ignore
PL in building areas, but for the estimation of indoor PL, PL in all
regions must be estimated. For indoor PL estimation, given informa-
tion such as reflectance and transmittance is correlated. It is impor-
tant to deal with correlated information. In the field of hyperspec-
tral image restoration, it is important to deal with channel-correlated
input. Multi-stage spectral-wise transformer (MST++) [3] is SOTA
method, which can capture channel correlation based on the attention
mechanism thanks to the high performance of vision transformer [4].

We propose to apply MST++ to indoor PL estimation, after
we develop direct PL level estimation. Based on this information,
MST++ can estimate the PL map. Experiments on the first indoor
pathloss radio map prediction challenge show that our proposed
approach was effective.

2. INDOOR PATH ESTIMATION

2.1. Direct PL level estimation

The input data for this challenge are reflectance (as shown in Fig. 1)
and transmittance within the building with the position of Tx, but
from these inputs it is difficult to estimate PL maps. Thus, we es-
timate the direct PL level before estimating the PL map. Based on
the reflectance information, the position of the wall within the build-
ing can be known. From the Tx position, the direct path can be
drawn as shown in Fig. 2. For every transmission of the direct path
through the wall, the power of the direct path is decreased. Depend-
ing on the power level, the direct PL level can be estimated as shown

Fig. 1. The normal incidence reflectance [dB] at each point of the
grid (0 for air).

Fig. 2. The schematics of direct path estimation.

Fig. 3. Direct PL level estimation.

in Fig. 3, which indicates that the brighter color corresponds to the
higher power level.



Fig. 4. Structure of multi-stage spectral-wise transformer (MST).
Here, conv, DS and US are convolution, downsampling, and upsam-
pling, respectively; matrices W , W V , WK , WQ, and σ are learn-
able. The height, width, and channels of the input to S-MSA are H ,
W , and C. ⊤ is the transpose of the matrix and fp is a position en-
coding function.

2.2. MST++ to pathloss estimation

We used MST++[3] to estimate the PL map from reflectance, trans-
mittance, distance from Tx, and estimated direct PL level in the pre-
vious section, as shown in Fig. 4. This model can deal with the
correlated inputs to estimate the PL map accurately.

3. EXPERIMENT

3.1. Experimental conditions

We used the first indoor pathloss radio map prediction challenge
data. There were 25 different indoor geometries and PL maps were
observed at three different frequencies (868 MHz, 1.8 GHz, and
3.5 GHz) with five antenna radiation patterns. The input data was
composed of three channels, which were the normal incidence re-
flectance in dB at each point of the grid (0 for air), the normal inci-
dence transmittance in dB at each point of the grid (0 for air), and the
physical distance between Tx and each point of the grid. The output
to be estimated was the PL map within the building where each point
of the image denotes the PL at that point.

This challenge consisted of three tasks. Task 1 was an evaluation
of the simulated data with an isotropic antenna pattern conducted at
868 MHz for the 25 buildings. For each building, 50 radio maps were
generated by placing the Tx in different locations within the build-
ing. Task 2 was an evaluation of the simulated data with an isotropic
antenna pattern conducted at three different frequencies (0.868, 2,
and 3.5 GHz) for the 25 buildings. For each building and frequency,
50 radio maps were generated by placing the Tx in different locations
within the building. Task 3 was an evaluation of the simulated data
with five different antenna radiation patterns conducted at 0.868, 2
and 3.5 GHz for the 25 buildings.

We input an estimated direct PL level as shown in Fig. 3 in addi-
tion to the three channels given (in total four channels) into MST++.
To train MST++, Adam optimizer was applied, and to overcome the
problem of the limited amount of data, data augmentation of clop
and flip was used. We divide training sets into training and valida-
tion sets as shown in Table 1.

Table 1. The number of data for training and validation sets.

task training validation
task1 1250 125
task2 3750 375
task3 27750 2775

Fig. 5. Estimated PL by MST++ for the validation set of task 1.

Fig. 6. Reference PL for the validation set of task 1.

Table 2. Mean square error (MSE) for validation data.

task MSE
task 1 0.0001439
task 2 0.0004047
task 3 0.0006197

3.2. Result and discussion

Fig. 5 shows the estimated PL map within the building. The ground
truth of the PL map was Fig. 6. Comparison of them shows that our
proposed approach can accurately estimate the PL map. The contour
of the PL map corresponds to that in Fig. 3, which indicates that the
estimation of the direct PL level is important. Table 2 shows the
mean square error (MSE) of the prediction for the validation data,
which were not included in the training data. The predicted PL maps
have a small MSE.



4. CONCLUSION

We applied MST++ to the estimation of the PL map for dealing with
correlated input data. After the estimation of direct PL estimation,
we used MST++ to estimate the PL map from the input of four chan-
nels. Experiments show the effectiveness of our approach.
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